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Fig (1) 

3- different fits to the curve 

Fig (2) 
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Discrete Fourier Transform of Real Sequence

Motivation:

     Consider a finite duration signal 
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The inverse DFT (IDFT) which is used to reconstruct the signal is given by:
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If, from equation (1) we could compute complete frequency spectrum i.e. 
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. The fallacy in the above statement is quite obvious as we have only finite samples and the curve connecting any 2-samples can be defined plausibly in infinitely many ways (see fig (2)). This suggests that from (1), we should be able to derive only limited amount of frequency domain information.

     Since, we have N-data points [real] and 

[image: image12.wmf])


(


f


G


 a complex number contains both magnitude and phase angle information in the frequency domain (2-units of information), it is reasonable to expect that we should be in a position to predict atmost 

[image: image13.wmf]2


N


 independent transforms 

[image: image14.wmf])


(


f


G


 for original signal.


Now, let   

[image: image15.wmf]N


f


Nt


T


f


s


s


=


=


=


1


1


0




    and  

[image: image16.wmf]N


mf


Nt


m


mf


f


s


s


=


=


=


0


                      (3)

then substituting (3) in (1), we get
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    Note that our choice of frequency f0 is  such that the exponential term in (1) is independent of 
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 is that, basically we are attempting a transform on discrete samples which may (or) may not have a corresponding analog ‘parent’ signal. This suggests to us the following discrete version of Fourier transform for a discrete sequence 

[image: image21.wmf]{


}


1


1


0


,......,


,


-


N


x


x


x




                                             

[image: image22.wmf]å


-


=


-


=


1


0


2


)


(


)


(


N


n


N


mn


j


e


n


x


m


X


p


                                (4)


Our next job should be to come up with inverse transformation. Assuming for N-samples 
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 that (4) would be a transformation and if (2) defines IFT in continuous domain, in the discrete domain, we can hypothesize following inverse transform.
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Where K is a suitable scaling factor.


Our next job is to verify that (4) and (5) indeed define a transformation pair

Substituting (4) in (5), we get following expression for right hand side of (5)

                    Right hand side
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                                                               [Note the use of dummy subscript 
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Let us work this expression out in a long hand fashion; for compactness we use notation 
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In the above expression, for the first row 

[image: image29.wmf]m


 is set to zero, for the second row it is set to one and for the last row 
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Now, grouping terms column wise, we get
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Note that this jugglery shows that we can interchange the summation order. One order indicates row wise and another column wise summation

  i.e.             

[image: image33.wmf]å


å


-


=


-


=


-


=


1


0


1


0


)


(


2


1


N


k


N


m


k


n


N


m


j


k


e


x


K


RHS


p


                                   (7)

       Our primary task now is to evaluate the expression.
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We now claim that 
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Proof: - for 

[image: image36.wmf]n


k


=


     

[image: image37.wmf]m


e


e


m


j


m


k


n


N


j


"


=


=


-


1


.


0


.


)


(


2


p




Hence, the first case is obvious.

Now, if 
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Now, 
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Note that we have used the following geometric series expression 
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Thus, RHS in (6) is equal to 
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We see that equation (6) defines the inverse transformation if we choose 
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Thus, N-point DFT and IDFT for samples 
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Note that in general DFT and inverse DFT can be defined in many ways, each only differing in choice of constant 
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DFT                                                           IDFT

i.e.       
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The constraint in choosing the constants is that product 
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For Example, when
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Choice of 
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 is commonly used in relaying because it simplifies phasor estimation. Phasor estimation will be discussed later.


We now discuss some important properties of DFT.


Properties


1. Linearity :     
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2. Time Shift:     
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3. Frequency Shift:
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4. Duality :         
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why?        

[image: image65.wmf]å


-


=


-


=


1


0


/


2


)


(


)


(


N


m


N


mk


j


e


m


x


k


X


p







[image: image66.wmf]å


-


=


-


=


1


0


/


2


)


(


))


(


(


N


n


N


nk


j


e


n


X


n


X


DFT


p





DFT of x(m)





[image: image67.wmf]å


å


-


=


-


-


-


-


=


-


=


-


=


=


-


=


-


1


0


/


2


/


2


/


2


/


)


(


2


1


0


/


)


(


2


)


(


1


)


(


)


(


1


)


(


)


(


N


k


N


kn


j


N


kn


j


N


kN


j


N


n


N


k


j


N


k


N


n


N


k


j


e


k


X


N


n


x


e


e


e


e


k


X


N


n


N


x


n


x


p


p


p


p


p







[image: image68.wmf])


(


)


(


1


))


(


(


1


0


/


2


1


k


x


e


n


X


N


n


X


N


DFT


N


n


N


nk


j


-


=


=


Þ


å


-


=


-


-


p




5. Circular convolution
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circular convolution


6. Multiplication
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7. Parseval’s Theorem
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8. Transforms of even real functions:
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(the DFT of an even real sequence is even and real )


9. Transform of odd real functions:
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(the DFT of an odd real sequence is odd and imaginary )


10. z(n) = x(n) + jy(n)


z(n) ( Z(k) = X(k) + jY(k)


Methods of Circular Convolution

Generally, there are two methods, which are adopted to perform circular convolution and they are −


· Concentric circle method,


· Matrix multiplication method.


Concentric Circle Method

Let x1(n)x1(n) and x2(n)x2(n) be two given sequences. The steps followed for circular convolution of x1(n)x1(n) and x2(n)x2(n) are


· Take two concentric circles. Plot N samples of x1(n)x1(n) on the circumference of the outer circle (maintaining equal distance successive points) in anti-clockwise direction.


· For plotting x2(n)x2(n), plot N samples of x2(n)x2(n) in clockwise direction on the inner circle, starting sample placed at the same point as 0thsample of x1(n)x1(n)

· Multiply corresponding samples on the two circles and add them to get output.


· Rotate the inner circle anti-clockwise with one sample at a time.


Matrix Multiplication Method

Matrix method represents the two given sequence x1(n)x1(n) and x2(n)x2(n) in matrix form.


· One of the given sequences is repeated via circular shift of one sample at a time to form a N X N matrix.


· The other sequence is represented as column matrix.


· The multiplication of two matrices give the result of circular convolution.


DFT provides an alternative approach to time domain convolution. It can be used to perform linear filtering in frequency domain.


Thus,Y(ω)=X(ω).H(ω)⟷y(n)Y(ω)=X(ω).H(ω)⟷y(n).


The problem in this frequency domain approach is that Y(ω)Y(ω), X(ω)X(ω) and H(ω)H(ω)are continuous function of ω, which is not fruitful for digital computation on computers. However, DFT provides sampled version of these waveforms to solve the purpose.


The advantage is that, having knowledge of faster DFT techniques likes of FFT, a computationally higher efficient algorithm can be developed for digital computer computation in comparison with time domain approach.


Consider a finite duration sequence, [x(n)=0,for,n<0andn≥L][x(n)=0,for,n<0andn≥L](generalized equation), excites a linear filter with impulse response [h(n)=0,forn<0andn≥M][h(n)=0,forn<0andn≥M].


x(n)y(n)x(n)y(n)

output=y(n)=∑k=0M−1h(k).x(n−k)output=y(n)=∑k=0M−1h(k).x(n−k)

From the convolution analysis, it is clear that, the duration of y(n) is L+M−1.


In frequency domain,


Y(ω)=X(ω).H(ω)Y(ω)=X(ω).H(ω)

Now, Y(ω)Y(ω) is a continuous function of ω and it is sampled at a set of discrete frequencies with number of distinct samples which must be equal to or exceeds L+M−1L+M−1.


DFTsize=N≥L+M−1DFTsize=N≥L+M−1

With ω=2πNkω=2πNk,


Y(ω)=X(k).H(k)Y(ω)=X(k).H(k), where k=0,1,….,N-1


Where, X(k) and H(k) are N-point DFTs of x(n) and h(n) respectively. x(n)&h(n)x(n)&h(n) are padded with zeros up to the length N. It will not distort the continuous spectra X(ω)X(ω) and H(ω)H(ω). Since N≥L+M−1N≥L+M−1, N-point DFT of output sequence y(n) is sufficient to represent y(n) in frequency domain and these facts infer that the multiplication of N-point DFTs of X(k) and H(k), followed by the computation of N-point IDFT must yield y(n).


This implies, N-point circular convolution of x(n) and H(n) with zero padding, equals to linear convolution of x(n) and h(n).


Thus, DFT can be used for linear filtering.


Caution − N should always be greater than or equal to L+M−1L+M−1. Otherwise, aliasing effect would corrupt the output sequence.


Suppose, the input sequence x(n) of long duration is to be processed with a system having finite duration impulse response by convolving the two sequences. Since, the linear filtering performed via DFT involves operation on a fixed size data block, the input sequence is divided into different fixed size data block before processing.


The successive blocks are then processed one at a time and the results are combined to produce the net result.


As the convolution is performed by dividing the long input sequence into different fixed size sections, it is called sectioned convolution. A long input sequence is segmented to fixed size blocks, prior to FIR filter processing.


Two methods are used to evaluate the discrete convolution −


· Overlap-save method

· Overlap-add method

Overlap Save Method

Overlap–save is the traditional name for an efficient way to evaluate the discrete convolution between a very long signal x(n) and a finite impulse response (FIR) filter h(n). Given below are the steps of Overlap save method −


Let the length of input data block = N = L+M-1. Therefore, DFT and IDFT length = N. Each data block carries M-1 data points of previous block followed by L new data points to form a data sequence of length N = L+M-1.


· First, N-point DFT is computed for each data block.


· By appending (L-1) zeros, the impulse response of FIR filter is increased in length and N point DFT is calculated and stored.


· Multiplication of two N-point DFTs H(k) and Xm(k) : Y′m(k) = H(k).Xm(k), where K=0,1,2,…N-1


· Then, IDFT[Y′m((k)] = y′((n) = [y′m(0), y′m(1), y′m(2),.......y′m(M-1), y′m(M),.......y′m(N-1)]


(here, N-1 = L+M-2)


· First M-1 points are corrupted due to aliasing and hence, they are discarded because the data record is of length N.


· The last L points are exactly same as a result of convolution, so


y′m (n) = ym(n) where n = M, M+1,….N-1


· To avoid aliasing, the last M-1 elements of each data record are saved and these points carry forward to the subsequent record and become 1st M-1 elements.


[image: image74.jpg]

· Result of IDFT, where first M-1 Points are avoided, to nullify aliasing and remaining L points constitute desired result as that of a linear convolution.


Overlap Add Method

Given below are the steps to find out the discrete convolution using Overlap method −


Let the input data block size be L. Therefore, the size of DFT and IDFT: N = L+M-1


· Each data block is appended with M-1 zeros to the last.


· Compute N-point DFT.


[image: image75.jpg]

· Two N-point DFTs are multiplied: Ym(k) = H(k).Xm(k), where k = 0,,1,2,….,N-1


· IDFT [Ym(k)] produces blocks of length N which are not affected by aliasing as the size of DFT is N = L+M-1 and increased lengths of the sequences to N-points by appending M-1 zeros to each block.


· Last M-1 points of each block must be overlapped and added to first M-1 points of the succeeding block.


(reason: Each data block terminates with M-1 zeros)


Hence, this method is known Overlap-add method. Thus, we get −


y(n) = {y1(0), y1(1), y1(2), ... .., y1(L-1), y1(L)+y2(0), y1(L+1)+y2(1), ... ... .., y1(N-1)+y2(M-1),y2(M), ... ... ... ... ... }


FFT ALGORITHMS


1. DFT Algorithm
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2. Examples 


Example 1: Two-Point DFT


x(0), x(1):   
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Example 2: Generalization of derivation in example 10-3 to a four-point DFT


x(0), x(1), x(2), x(3) 
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                                                                        Two – point DFT


If we denote z(0) = x(0), z(1) = x(2) => Z(0) = z(0) + z(1) = x(0) + x(2)

 
 
                                             Z(1) = z(0) - z(1) = x(0) - x(2)


v(0) = x(1), v(1) = x(3) => V(0) = v(0) + v(1) = x(1) + x(3)

 
 
                                            V(1) = v(0) - v(1) = x(1) - x(3)

Four – point DFT       Two-point DFT


(  X(0) = Z(0) + V(0)

X(1) = Z(1) + (-j)V(1)

X(2) = Z(0) - V(0)

X(3) = Z(1) + jV(1)
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       (  One Four – point DFT       (Two Two – point DFT 


 Mathematical Derivation of the FFT


  1.Decimation-in-Time FFT Algorithm



x(0), x(1), … , x(N-1)



[image: image98.wmf]m


N


2


=




     =>

[image: image99.wmf]ï


ï


ï


î


ï


ï


ï


í


ì


+


=


-


-


-


=


-


-


-


))


1


2


(


)


(


(


))


1


(


,


),


3


(


),


1


(


((


int


2


)


1


2


(


,


),


1


(


),


0


(


))


2


(


)


(


(


))


2


(


,


),


2


(


),


0


(


((


int


2


)


1


2


(


,


),


1


(


),


0


(


r


x


r


h


N


x


x


x


s


po


N


odd


N


h


h


h


r


x


r


g


N


x


x


x


s


po


N


enen


N


g


g


g


L


L


L


L







[image: image100.wmf]å


å


å


å


å


-


=


-


=


-


=


+


-


=


-


=


+


=


-


=


+


=


=


1


2


/


0


2


1


2


/


0


2


1


2


/


0


)


1


2


(


1


2


/


0


)


2


(


1


0


)


(


)


(


         


)


1


,...,


1


,


0


(


)


(


)


(


         


)


(


)


(


N


r


kr


N


k


N


N


r


kr


N


N


r


r


k


N


N


r


r


k


N


N


n


kn


N


W


r


h


W


W


r


g


N


k


W


r


h


W


r


g


W


n


x


k


X







[image: image101.wmf])


(


)


(


    


          


)


(


)


(


)


(


)


(


)


(


1


2


/


0


2


/


1


2


/


0


2


/


2


)


2


/


/(.


2


2


/


.


2


2


k


H


W


k


G


W


r


h


W


W


r


g


k


X


W


e


e


W


k


N


N


r


kr


N


k


N


N


r


kr


N


kr


N


kr


N


j


kr


N


j


kr


N


+


=


+


=


Þ


=


=


=


å


å


-


=


-


=


-


-


p


p





         ( G(k): N/2 point DFT output (even indexed), H(k) : N/2 point DFT output (odd indexed))
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Question: X(k) needs G(k), H(k),    k=… N-1 



How do we obtain G(k), H(k), for k > N/2-1 ?



G(k) = G(N/2+k)                            k <= N/2-1


H(k) = H(N/2+k)                            k <= N/2-1

[image: image103.png]

Future Decimation 



g(0), g(1), …, g(N/2-1)            G(k)



h(0), h(1), …, h(N/2-1)             H(k)
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2. Decimation-in-Frequency FFT Algorithm

        x(0), x(1), … , x(N-1)
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let m = n-N/2   (n = N/2+m)

n = N/2 => m = N/2-N/2 = 0







n = N-1 => m = N-1-N/2 = N/2-1
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Consider N/2 point DFT
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Fig (1)





3- different fits to the curve





Fig (2)
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N/2 point DFT 
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